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Abstract 

Accurate automatic segmentation of LGE-CMR images 

is vital for personalized cardiac modeling. We developed a 

two-stage method: a DL-based solution for left ventricular 

(LV) segmentation and an MGMM solution for infarct 

tissue (IT) in LV, enabling fully automated cardiac 

segmentation. Ventricular models were constructed for 

three patients using segmented LGE-CMR images, and 

programmed electrical stimulation induced VT. Our 

method achieved an 81.21 DS for LV and an 82.9 DS for 

IT. Simulation results for these patients matched manual 

methods, indicating the efficiency and reliability of our 

two-stage approach for personalized cardiac modeling. 

 

1. Introduction 

Sudden cardiac death (SCD) remains a global health 

concern [1], primarily attributed to ventricular 

tachyarrhythmia (VT) in individuals with myocardial 

infarction (MI) [2,3]. Personalized computational 

modeling offers a non-invasive approach to predict 

arrhythmia risk and reentry circuit locations, guiding VT 

ablation in clinical practice [4]. This patient-specific 

method relies on magnetic resonance imaging (MRI) for 

accurate heart model reconstruction. However, the LGE 

CMR modality, often characterized by poor image quality 

and fibrotic regions, presents challenges for LGE-CMR 

segmentation. 

Traditional methods have been developed in recent 

years, but many still require manual or preparatory work, 

limiting efficiency, especially in clinical settings. With the 

advancements in artificial intelligence, automated 

segmentation methods have gained attention, with 

Convolutional Neural Networks (CNNs) and Transformers 

being noteworthy examples. 

We developed a two-stage approach employing a deep 

learning (DL) solution using TransUNet [5], a hybrid of 

CNN and Transformer, for LV segmentation, and a 

modified Gaussian mixture model (MGMM) for infarct 

tissue (IT) segmentation within the LV, enabling fully 

automated cardiac segmentation. This architecture was 

evaluated on the 2020 MICCAI EMIDEC challenge 

dataset [6] and a private dataset. Subsequently, 

personalized cardiac modeling [4] was performed based on 

the segmentation results. The results demonstrate that this 

two-stage method is efficient and meets clinical 

requirements [1]. 

 

2. Method 

2.1. Data Description 

The study utilized CMR-LGE data from 168 hearts, 

with 100 patients sourced from the 2020 MICCAI 

EMIDEC challenge dataset, and 68 patients from Beijing 

Anzhen Hospital. Manual annotations included labels for 

background, normal myocardium, and myocardial 

infarction. 

 

2.2. TransUNet 

The TransUNet architecture, introduced by Chen et al. [5], 

combines ConvNets and Transformers to enhance medical 

image segmentation. Similar to U-Net[7], it employs 

ConvNets in the encoder for global context extraction and 

utilizes Transformers for capturing long-term 

dependencies. The decoder features a cascaded upsampler 

(CUP) with multiple upsampling steps, each comprising a 

2× upsampling operator, 3×3 convolution layer, and ReLU 

activation. For more details, please refer to the published 

paper [5]. 

Figure 1. Overview of the framework. 

2.3. Modified Gaussian Mixture Model 

Method 
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The GMM method uses Gaussian distribution for tissue 

intensity modeling in medical images, enabling 

classification into non-infarct and infarct regions via 

histogram fitting. Key details are available in our prior 

publication [8]. Subsequently, significant components are 

preserved while small clusters (fewer than 15 pixels) are 

eliminated. To further segment infarct tissue into the gray 

zone (GZ) and core scar, pixel intensity statistics are 

employed, designating pixels > 50% of the intensity range 

as core scar and the rest within the infarct area as GZ. 

 

2.4. Model Construction And Simulation 

Protocol 

    Following image segmentation with CardioViz3D [9], 

low-resolution images were interpolated to approximately 

0.4 mm resolution. 3D geometry of infarct tissue (core scar 

and GZ) was reconstructed using the log odds method [10] 

and merged with corresponding high-resolution ventricular 

images. The finite-element mesh for patient-specific bi-

ventricular geometry was generated using Mimics 

Innovation Suite [9]. Fiber orientations were assigned 

using a rule-based method [11]. 

Electrophysiological properties were assigned as 

described previously [12,13], and electrical activity 

propagation was simulated with a finite-element method 

[14]. Simulations were executed with Neumann boundary 

conditions using the openCARP simulation environment 

[15] on high-performance computers at Dalian University 

of Technology, China. VTs were induced in the models of 

five patients using programmed electrical stimulation as in 

prior articles [12,13]. 

 

 
Figure 2. Overview of the MGMM and Virtual-heart 

modeling. 

3. Result 

We conduct experiments on EMIDEC Challenge 

dataset [6] and Anzhen private dataset. We divide the 

labeled EMIDEC public dataset which contains 100 cases 

into 85 patients training dataset and 15 test dataset 

randomly, Similarly, the Anzhen private dataset was 

divided into 58 training dataset and 10 test dataset.Table 1 

shows the quantitative calculations and comparisons of 

MYO and infarct tissue on EMIDEC dataset with some 

state-of-the-art methods using the dice coefficients. Due to 

the random nature of data partitioning, the results of the 

other methods in Table 1 are taken from the results in the 

corresponding papers.As shown in Table 1, the best model 

achieves 87.8 dice score of myocardium, +7.2 better than 

TransUnet with 80.6, while the median accuracy of all the 

other methods -1.0 lower than TransUnet.  

 

Table 1. Comparison on EMIDEC dataset 

 

Methods DSC (avg) MYO IT 

Cascaded CNN 79.5 87.8 71.2 

Deep convolutional network 62.0 84.0 40.0 

Uncertainty-based U-net 45.3 68.9 21.6 

TranUNet 51.1 80.6 41.2 

 

Figure 3 shows the result of myocardial tissue on 

Anzhen dataset. By comparing layer by layer, the 

performance of myocardium segmentaion obtained by 

TransUnet is satisfactory, especially at the middle regions, 

which are very close to the true value. 

 

 
Figure 4. The result of infarct tissue with one and two 

classes of PAT01 based on MGMM method, (a) is original 

image, (b) is classification result with two categories and 

(c) is classification result with three categories. 

 

For IT, in contrary to myocardium segmentation, 

TransUnet and almost all of the models in Table 1 achieve 

poor accuracy, considering the LGE CMR modality suffers 

from terrible image quality. In contrast, as shown in the 

Table 2, the IT segmentation accuracy of Anzhen private 

dataset using MGMM is 82.9, the good performance also 

can be seen by predicted result in Figure 4. 

 

Table 2. Dice score of 3 patients on myocardium and IT 

respectively based on two-stage automatic segmentation 

method 
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PAT Dice of 

Myocardium using 

DL-based method 

Dice of Infarct 

tissue using 

MGMM method 

PAT01 79．8 90．5 

PAT02 82．2 78．4 

PAT03 74．2 76．1 

PAT04 81．7 82．1 

PAT04 81．9 70．8 

 

 
 

Figure 4. The result of infarct tissue with one and two 

classes of PAT01 based on MGMM method, (a) is original 

image, (b) is classification result with two categories and 

(c) is classification result with three categories. 

 

Table 3 presents VTs induced in 5 patients, comparing 

the accuracy of our automatic segmentation with manual 

reentry. Patient 3, with the lowest Dice score for 

myocardium segmentation (Tables 3 and 4), also exhibited 

unsatisfactory IT segmentation and reentry accuracy, 

likely due to initial incorrect tissue segmentation. 

However, the remaining 4 patients demonstrated consistent 

reentry locations and morphologies using our method 

compared to manual. Figure 5 is simulation reentry based 

on our method on PAT04. The clinical diagnosis showed 

that there was no infarct related VT event when the patient 

was in hospital, in the same, there was no stable reentry 

induced in the model. 

 

Table 3. Ventricular tachycardias induced in 5 patients 

based on automatic segmentation method 
PAT Induction 

ratio 

Location Morphology %Accuracy 

PAT01 1/5 Posterior 

Endocardium 

Stable 100 

PAT02 1/5 Apical Endocardium Stable 100 

PAT03 1/5 Inferior Epicardium Stable 0 

PAT04 0 Right Lateral 

Epicardium 

Unstable reentry 100 

PAT05 4/5 Apical Endocardium Unstable reentry 100 

 

 
Figure 5 PAT04 simulation reentry based on two 

different segmentation methods. 

 

4. Conclusion 

This paper presents a two-stage approach, combining a 

CNN-Transformer hybrid for LV segmentation and 

MGMM for IT segmentation within the LV. The study 

demonstrates the method's feasibility in personalized 

cardiac modeling, indicating clinical potential. Efficient 

and satisfactory outcomes were obtained. The paper 

encourages further exploration of deep learning in cardiac 

modeling for improved clinical efficiency. 
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